149 research outputs found

    Establishment versus population growth in spatio-temporally varying environments

    Get PDF
    We consider situations where repeated invasion attempts occur from a source population into a receptor population over extended periods of time. The receptor population contains two locations that provide different expected off- spring numbers to invaders. There is demographic stochasticity in offspring numbers. In addition, temporal variation causes local invader fitnesses to vary. We show that effects of environmental autocorrelation on establishment success depend on spatial covariance of the receptor subpopulations. In situ- ations with a low spatial covariance this effect is positive, whereas high spatial covariance and/or high migration probabilities between the subpopulations causes the effect to be negative. This result reconciles seemingly contradictory results from the literature concerning effects of temporal variation on popu- lation dynamics with demographic stochasticity. We study an example in the context of genetic introgression, where invasions of cultivar plant genes occur through pollen flow from a source population into wild-type receptor populations, but our results have implications in a wider range of contexts, such as the spread of exotic species, metapopulation dynamics and epidemics.Global Challenges (FGGA

    Evolutionary branching in a stochastic population model with discrete mutational steps

    Full text link
    Evolutionary branching is analysed in a stochastic, individual-based population model under mutation and selection. In such models, the common assumption is that individual reproduction and life career are characterised by values of a trait, and also by population sizes, and that mutations lead to small changes in trait value. Then, traditionally, the evolutionary dynamics is studied in the limit of vanishing mutational step sizes. In the present approach, small but non-negligible mutational steps are considered. By means of theoretical analysis in the limit of infinitely large populations, as well as computer simulations, we demonstrate how discrete mutational steps affect the patterns of evolutionary branching. We also argue that the average time to the first branching depends in a sensitive way on both mutational step size and population size.Comment: 12 pages, 8 figures. Revised versio

    Optimal Patch-Leaving Behaviour: A Case Study Using The Parasitoid Cotesia rebecula

    Get PDF
    1. Parasitoids are predicted to spend longer in patches with more hosts, but previous work on Cotesia rubecula (Marshall) has not upheld this prediction. Tests of theoretical predictions may be affected by the definition of patch leaving behaviour, which is often ambiguous. 2. In this study whole plants were considered as patches and assumed that wasps move within patches by means of walking or flying. Within-patch and between-patch flights were distinguished based on flight distance. The quality of this classification was tested statistically by examination of log-survivor curves of flight times. 3. Wasps remained longer in patches with higher host densities, which is consistent with predictions of the marginal value theorem (Charnov 1976). Under the assumption that each flight indicates a patch departure, there is no relationship between host density and leaving tendency. 4. Oviposition influences the patch leaving behaviour of wasps in a count down fashion (Driessen et al. 1995), as predicted by an optimal foraging model (Tenhumberg, Keller & Possingham 2001). 5. Wasps spend significantly longer in the first patch encountered following release, resulting in an increased rate of superparasitism

    Prospects & Overviews Bet hedging or not? A guide to proper classification of microbial survival strategies

    Get PDF
    Bacteria have developed an impressive ability to survive and propagate in highly diverse and changing environments by evolving phenotypic heterogeneity. Phenotypic heterogeneity ensures that a subpopulation is well prepared for environmental changes. The expression bet hedging is commonly (but often incorrectly) used by molecular biologists to describe any observed phenotypic heterogeneity. In evolutionary biology, however, bet hedging denotes a risk-spreading strategy displayed by isogenic populations that evolved in unpredictably changing environments. Opposed to other survival strategies, bet hedging evolves because the selection environment changes and favours different phenotypes at different times. Consequently, in bet hedging populations all phenotypes perform differently well at any time, depending on the selection pressures present. Moreover, bet hedging is the only strategy in which temporal variance of offspring numbers per individual is minimized. Our paper aims to provide a guide for the correct use of the term bet hedging in molecular biology

    Single-crossover dynamics: finite versus infinite populations

    Full text link
    Populations evolving under the joint influence of recombination and resampling (traditionally known as genetic drift) are investigated. First, we summarise and adapt a deterministic approach, as valid for infinite populations, which assumes continuous time and single crossover events. The corresponding nonlinear system of differential equations permits a closed solution, both in terms of the type frequencies and via linkage disequilibria of all orders. To include stochastic effects, we then consider the corresponding finite-population model, the Moran model with single crossovers, and examine it both analytically and by means of simulations. Particular emphasis is on the connection with the deterministic solution. If there is only recombination and every pair of recombined offspring replaces their pair of parents (i.e., there is no resampling), then the {\em expected} type frequencies in the finite population, of arbitrary size, equal the type frequencies in the infinite population. If resampling is included, the stochastic process converges, in the infinite-population limit, to the deterministic dynamics, which turns out to be a good approximation already for populations of moderate size.Comment: 21 pages, 4 figure

    How Gaussian competition leads to lumpy or uniform species distributions

    Get PDF
    A central model in theoretical ecology considers the competition of a range of species for a broad spectrum of resources. Recent studies have shown that essentially two different outcomes are possible. Either the species surviving competition are more or less uniformly distributed over the resource spectrum, or their distribution is 'lumped' (or 'clumped'), consisting of clusters of species with similar resource use that are separated by gaps in resource space. Which of these outcomes will occur crucially depends on the competition kernel, which reflects the shape of the resource utilization pattern of the competing species. Most models considered in the literature assume a Gaussian competition kernel. This is unfortunate, since predictions based on such a Gaussian assumption are not robust. In fact, Gaussian kernels are a border case scenario, and slight deviations from this function can lead to either uniform or lumped species distributions. Here we illustrate the non-robustness of the Gaussian assumption by simulating different implementations of the standard competition model with constant carrying capacity. In this scenario, lumped species distributions can come about by secondary ecological or evolutionary mechanisms or by details of the numerical implementation of the model. We analyze the origin of this sensitivity and discuss it in the context of recent applications of the model.Comment: 11 pages, 3 figures, revised versio

    A procedure for the change point problem in parametric models based on phi-divergence test-statistics

    Full text link
    This paper studies the change point problem for a general parametric, univariate or multivariate family of distributions. An information theoretic procedure is developed which is based on general divergence measures for testing the hypothesis of the existence of a change. For comparing the accuracy of the new test-statistic a simulation study is performed for the special case of a univariate discrete model. Finally, the procedure proposed in this paper is illustrated through a classical change-point example

    Qualitative Multi-Objective Reachability for Ordered Branching MDPs

    Get PDF
    We study qualitative multi-objective reachability problems for Ordered Branching Markov Decision Processes (OBMDPs), or equivalently context-free MDPs, building on prior results for single-target reachability on Branching Markov Decision Processes (BMDPs). We provide two separate algorithms for "almost-sure" and "limit-sure" multi-target reachability for OBMDPs. Specifically, given an OBMDP, A\mathcal{A}, given a starting non-terminal, and given a set of target non-terminals KK of size k=∣K∣k = |K|, our first algorithm decides whether the supremum probability, of generating a tree that contains every target non-terminal in set KK, is 11. Our second algorithm decides whether there is a strategy for the player to almost-surely (with probability 11) generate a tree that contains every target non-terminal in set KK. The two separate algorithms are needed: we show that indeed, in this context, "almost-sure" =Ìž\not= "limit-sure" for multi-target reachability, meaning that there are OBMDPs for which the player may not have any strategy to achieve probability exactly 11 of reaching all targets in set KK in the same generated tree, but may have a sequence of strategies that achieve probability arbitrarily close to 11. Both algorithms run in time 2O(k)⋅∣A∣O(1)2^{O(k)} \cdot |\mathcal{A}|^{O(1)}, where ∣A∣|\mathcal{A}| is the total bit encoding length of the given OBMDP, A\mathcal{A}. Hence they run in polynomial time when kk is fixed, and are fixed-parameter tractable with respect to kk. Moreover, we show that even the qualitative almost-sure (and limit-sure) multi-target reachability decision problem is in general NP-hard, when the size kk of the set KK of target non-terminals is not fixed.Comment: 47 page

    Stochasticity in the adaptive dynamics of evolution: The bare bones

    Get PDF
    First a population model with one single type of individuals is considered. Individuals reproduce asexually by splitting into two, with a population-size-dependent probability. Population extinction, growth and persistence are studied. Subsequently the results are extended to such a population with two competing morphs and are applied to a simple model, where morphs arise through mutation. The movement in the trait space of a monomorphic population and its possible branching into polymorphism are discussed. This is a first report. It purports to display the basic conceptual structure of a simple exact probabilistic formulation of adaptive dynamics
    • 

    corecore